מרחב אוקלידי

נקודה במרחב האוקלידי התלת-ממדי מוגדרת בעזרת שלוש קואורדינטות.

במתמטיקה, מרחב אוקלידי הוא הכללה לממד כללי של המישור וגם של המרחב התלת-ממדי, שהם הבסיס של הגאומטריה האוקלידית. מרחבים אוקלידיים נבדלים מן המרחבים העקומים של הגאומטריה הלא אוקלידית. המונח אוקלידי נגזר משמו של המתמטיקאי היווני אוקלידס.

בגאומטריה היוונית הקלאסית, המישור האוקלידי והמרחב האוקלידי התלת-ממדי הוגדרו באמצעות מספר אקסיומות, וכל שאר תכונותיהם נבעו מהן כמשפטים. במתמטיקה המודרנית מקובל יותר להגדיר מישור אוקלידי באמצעות מערכת הצירים הקרטזית ובאמצעות הרעיונות של הגאומטריה האנליטית. הגישה הזאת מאפשרת להשתמש בכלים של האלגברה ושל החשבון האינפיניטסימלי גם בגאומטריה, ויתרונה בקלות החלתה על מישורים אוקלידיים רב-ממדיים.

מנקודת המבט המודרנית, יש למעשה רק מרחב אוקלידי אחד בכל ממד: הישר הממשי הוא המרחב האוקלידי החד-ממדי, המישור הוא המרחב האוקלידי הדו-ממדי, ובדומה, בממדים הגבוהים יותר, יהיה זה מרחב עם מספר גדול יותר של קואורדינטות ממשיות. כך, נקודה במרחב אוקלידי n ממדי היא n-יה סדורה של מספרים ממשיים, ואת המרחק בין נקודות מחשבים בעזרת נוסחת המרחק האוקלידי. בדרך כלל מסמנים המתמטיקאים את המרחב האוקלידי ה-n-ממדי ב-. לפעמים מסמנים אותו ב- כדי להדגיש את אופיו האוקלידי. הממד של מרחבים אוקלידיים הוא סופי.