אריתמטיקה | תורת המספרים
English: Arithmetic

תורת המספרים

Postscript-viewer-shaded.png ערך מורחב – תורת המספרים

המונח "אריתמטיקה" מתקשר לעיתים גם לתורת המספרים בהקשר של תכונות ומציאת אלגוריתמים העוסקים בנושאים כגון ראשוניות, מבחני התחלקות ופירוק לגורמים, כמו גם פתרון משוואות דיופנטיות. בעבר נהוג היה להתייחס אל תורת המספרים בכללותה, בהרחבה, כאל "אריתמטיקה", אף כי היום אין נהוג לעשות עוד שימוש במונח זה למטרה זו. הדים לשימוש זה ניתן למצוא, למשל, במונחים "המשפט היסודי של האריתמטיקה" ו"פונקציות אריתמטיות".

המשפט היסודי של האריתמטיקה עוסק בפירוק לגורמים. משפט זה קובע כי כל מספר טבעי יכול להיכתב כמכפלה ייחודית של מספרים ראשוניים, פרט לשינוי סדר הגורמים. כפי שנרמז משמו, למשפט זה חשיבות רבה בתורת המספרים, שכן הוא מראה כי המספרים הראשוניים הם "אבני הבניין" של כלל המספרים. שמו של משפט זה מהווה דוגמה להכללה של המונח "אריתמטיקה" כך שהוא כולל גם נושאים המוכללים כיום בשם הרחב יותר "תורת המספרים".

פונקציות אריתמטיות הן פונקציות שמבואן הוא מספר טבעי ומוצאן הוא מספר טבעי אף הוא, כאשר המוצא נקבע לפי תכונות החלוקה של המבוא. דוגמה לפונקציה זו היא פונקציית מביוס. השם אשר נבחר לקבוצת פונקציות זו מדגים אף הוא מבט כולל יותר על גבולות האריתמטיקה.