הוכחה | השערה

השערה

טענות לא מעטות דרשו מאות רבות של שנים עד להוכחתן או להפרכתן. דוגמאות לכך הן המשפט האחרון של פרמה שזכה להוכחה כשלוש מאות וחמישים שנה לאחר שהועלה, ושלוש הבעיות של ימי קדם, שהוכחו כבלתי נתנות לפתרון כאלפיים שנה לאחר שהוצגו. בעיות פתוחות (כאלה שטרם זכו להוכחה או להפרכה) רבות ממשיכות ללוות את המתמטיקה, ובין המפורסמות שבהן ניתן למנות את השערת גולדבך והשערת רימן.

האם כל השערה ניתנת להוכחה או להפרכה? שאלה זו תלויה קודם כל במערכת האקסיומות בה אנחנו משתמשים. כיוון שכל הוכחה בנויה משימוש חוזר ונשנה באקסיומות ובכללי ההיסק קביעת אוסף שונה של אקסיומות תתן אוסף שונה של משפטים שניתן להוכיח. לא ניתן לבחור את האקסיומות בצורה שרירותית לחלוטין: אם קיימת סתירה באוסף האקסיומות שלנו אז ניתן להוכיח מתוכו כל משפט (כלומר ניתן להוכיח גם טענה וגם את שלילתה), ולכן אוסף זה אינו מעניין.

אוסף אקסיומות שלא מכיל סתירה נקרא עקבי. לאוסף כזה של אקסיומות יש מודלים שמממשים אותן, ומשפט השלמות של גדל טוען שאוסף המשפטים שניתן להוכיח מתוך האקסיומות הוא בדיוק אוסף המשפטים שמתקיימים בכל המודלים שמממשים את האקסיומות. לכן, אם לא ניתן להוכיח או להפריך טענה מסוימת מתוך מערכת אקסיומות נתונה, ניתן להוסיף אותה או את שלילתה לאוסף האקסיומות ולקבל אוסף עקבי חדש של אקסיומות.

מצד שני, ניתן לשאול האם קיים אוסף אקסיומות שהוא מצד אחד עקבי ומצד שני מספיק רחב כדי שיהיה אפשר להוכיח מתוכו או להפריך מתוכו כל טענה? משפט אי השלמות הראשון של גדל נותן תשובה שלילית לשאלה הזו עבור מקרים מעניינים רבים. מערכות אקסיומות שניתן לנסח בהן חלק מספיק משמעותי מהאריתמטיקה, לא יכולות להיות מצד אחד גדולות מספיק כדי שיהיה ניתן להוכיח או להפריך מתוכן כל טענה ומצד שני פשוטות לתיאור. באופן פורמלי: בתורה עקבית - שהאקסיומות שלה ניתנות לזיהוי מכני [="אפקטיבי"] - ושניתן לפתח בה את האריתמטיקה (של החיבור ושל הכפל), תמיד תהיינה השערות אשר מחד גיסא ניתנות לניסוח (בשפתה של התורה), ואשר מאידך גיסא אינן ניתנות להוכחה ואף לא להפרכה (במסגרת אותה תורה).

לעומת זאת, תחשיב פסוקים - המהוה את הבסיס של הלוגיקה המתמטית - הוא שלם, ולכן לא יהיו בו מקרים כאלו. קיימים ענפים נוספים - כוללניים יותר - שהינם שלמים (במובן זה), למשל תחשיב הכמתים (ללא סימני פונקציות/יחסים ואף ללא סימן השויון) מסדר ראשון, ואפילו האריתמטיקה של החיבור (ללא הכפל).